The Difference Between a Brownout vs. Power Outage

Share this article:

A sag in voltage or brownout condition can represent a major issue for most equipment. The longer the brownout, the more impact this event will have on equipment components. Depending on a situation, an outright power outage may be a better scenario than extended brownouts for equipment.

How are Brownouts Caused?

A brownout is a drop or sag in voltage along the electrical grid distribution. This is caused by increased demand on the utility grid. In high heat, summer conditions the increased demand of hvac systems over a large area will outweigh the supply of power. Therefore, causing a nominal drop in voltage across systems. Since there is not a disruption in service, this “over-demand” will cause the overall voltage to sag for an extended period of time. Causing rolling or regional brownouts.

Why are Brownouts Bad for Equipment?

Under normal power conditions, electrical grid distribution voltage is maintained within a certain nominal range. A variance in voltage of 5-10% is not unusual due to local equipment start/stop, or different events affecting the grid daily. Components are not made to endure long periods of low voltage. In fact, when low voltage is applied to power supplies a higher amperage event takes place to compensate for the decreased voltage. This spike in amperage is what causes heat and “burns out” equipment. Much like when a circuit in your house trips when amperage spikes over the breaker rating. When amperage is elevated for periods of time it can cause permanent damage to components, wiring, and mechanical equipment.

Why are Power Outages better than Brownouts?

Well, no one likes a power outage. As for equipment that is sensitive to amperage spikes such as controls systems or manufacturing processes, some would say it would be better for that equipment to just shut off rather than endure extended voltage sags and amperage spikes. Re-booting production lines, cleaning out extrusion systems vs failed equipment parts replacements are the trade-off.

Avoiding Brownouts

These days there is equipment which can be installed that will perform against voltage sags and brownouts.  Rather than installing an expensive UPS system and batteries that intercept and replace the voltage, an Active Voltage Regulator may be installed to correct these temporary brownout scenarios. Boosting the voltage sag back to normal.  Even a considerable single-phase voltage sagging to 30% of normal a Voltage Correction Device can boost that back to nominal. This is the best protection against this type of disturbance.

Voltage Correction

 

Voltage Correction is a provider of services to industry to install voltage correction devices, monitor incoming power to facility for solutions, and provide customers with comprehensive power solutions. 855-240-6776

 

Connect with Us:

by Tyler Marks 20 February 2025
Using Medium Voltage (MV) with Power Distribution for Industry provides an efficient delivery of High Capacity Power to Manufacturing Facility and Industrial Production Floors. A higher voltage provides a more “efficient” path for “AC Current” to travel to equipment. Large Motors and high inrush starter loads require much more Startup Current, medium voltage power distribution within a plant will provide an efficient capacity of Amperage for this high demand equipment. If production equipment in a Plant operates at lower voltage (LV), the delivery mechanism of higher voltage, closer to the equipment seeking the higher amperage, makes for more capacity available to the loads. This is achieved by the installation of step down function transformers, allowing the medium voltage (MV) to deliver higher capacity amperage “near” the loads. Then step down voltage at or near the equipment to the usable voltage. Benefits of Medium Voltage in a Facility -Higher Amperage Capacity delivered closer to Equipment Seeking Current (Amps). -Less “Current” loss during distribution through plant to various loads. -Lower “Pipe and Wire” costs as higher voltage requires smaller wire size to transmit. -More reliability in overall plant equipment: ie. Affects of power anomalies from lower voltage, sags, surges, failure of Machine Equipment Components. Disadvantages of Medium Voltage in a Facility -Higher cost to Utility for setup -Specialized Maintenance at higher voltage levels -Potential first costs higher for substation and distribution equipment up front, but lower cost of ownership over time. Low Voltage for Industrial Loads Low voltage distribution in a Plant can be installed successfully with a very constant load profile and demand. If there is larger equipment such as motors and processing that cycle on and off with large inrush current demand, this will affect the other areas of the Plant. These “surges” in demand for Current in these high demand inrush devices, can starve or pull down overall voltage in the other areas in the plant electrical distribution, or the entire plant. This will cause Power Supply failures in other equipment which seeks a constant voltage, or will burn components of other equipment due to variable voltage events. Over time this greatly affects a Plant’s Maintenance budget. Benefits of Low Voltage in a Facility -More Familiar Installation and Voltages for most Electrical Contractors. -Immediately available equipment, shorter lead times. -Simpler design and operation of electrical distribution and Electrical One Line. -Less step-down transformers within Facility and Electrical One Line Disadvantages of Low Voltage in a Facility -Exposed to more “Load” created anomalies that may affect other equipment -Limited amperage “Choke Points” for distribution and installation of larger equipment -Current loss from LV distribution through plant. -Susceptible to Inrush Current affect on immediate area or entire facility. -Higher “Pipe and Wire” costs as lower voltage requires higher amperage and larger wiring. Description and Uses of Low (LV) and Medium Voltages (MV) Low Voltage: 1kV - 15kV Typical City Use Power Grid Activities -Residential Use: (120v, 240v) -Commercial Building Use: (120/240v Single/Three Phase, 480v Three Phase) -Manufacturing and Industry: (480v Three Phase) -Localized Utility Distribution: Transformer to Load Medium Voltage: 13.8kV-34.5kV -High Density Data Center Uses -Large Manufacturing, Semiconductor -Motors, Compressors, Large Use Industrial Process -Electrical Utility Distribution, Long and Short Line distances High Voltage: 35kV and larger, 138kV -Long Transmission Lines Substation supply lines from Power Utility Sources -Industrial Processing Facilities, Steel, Mining. -Large transit requirements such as Railways and Commuter trains See your Voltage Correction Specialist to discuss Medium Voltage Power Distribution Options and Corrective Measures for your Facility Power Issues.
by Tyler Marks 20 February 2025
High Density AI compute performance chips like Nvidia Geoforce and now Blackwell B200 chips are requiring up to 300 watt, 400 watt, and 1200 watts. New rounds of chip development are considering up to 3000 watts of power per chip and requiring MEP Engineering design to consider bringing higher voltage closer to the Rack Loads. Why Medium Voltage UPS Systems Higher voltage carried over distances is more efficient than lower voltages carried over the same distance. Medium Voltage (13.8kV, 34.5kV) requires lower current (amps) to achieve the same capacities as low voltage (480v/208v), which exponentially changes the amount of power you can move from Point A to Point B, point B being the Rack loads. 480V Power Distribution for Data Centers In a legacy data center, medium voltage would be delivered to a substation or switchboard on-site. Transformers then step down medium voltage to 480V, which is widely used in data centers for the last 35 years. The typical legacy larger data center delivers 480 volts through the input switchgear, Uninterruptible Power System (UPS) via it’s Maintenance Bypass Switchboard route, and on to a Floor Power Distribution Unit (PDU). At the PDU, the load is stepped down via a internal PDU Transformer to usable 120/208V and 120/240V, which panels of breakers, or sub-feed breakers on the PDU support the actual breakers for servers. Low Voltage UPS Systems are limited to certain capacities to accumulate kW output for larger 2500kW or 5000kVA capacities. See Diagram 1.1
12 August 2024
Explore power backup solutions for Bitcoin mining operations. Learn how to protect your mining equipment from outages and ensure continuous, reliable power.
21 June 2024
Learn how heat domes cause rolling brownouts and affect power stability. Explore strategies to protect your facility from voltage sags and disruptions.
10 June 2024
The plastics industry has a history of complicated manufacturing processes. The procedure to melt plastic stock, transfer it to a die, then hardens to form the product is a process that cannot really be paused or interrupted. This article discusses ways to correct power interruptions for plastic extrusion manufacturing processes. Power Issues Affecting the Plastic… The post UPS Backup Systems for Plastic Extrusion Power Issues appeared first on Industrial Clean Power.
23 May 2024
The ABB PCS 100 Active Voltage Conditioner helps industrial facilities prevent voltage sags and surges, ensuring stable power and equipment protection.
More posts
Share by: